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It is by now widely accepted that many interesting problems in population biology can be formulated
in the language of dynamical systems. The Lotka-Volterra equations for two interacting populations
have found their ways into many textbooks on dynamical systems and serve as examples for phase-
plane analysis and other dynamical systems techniques. The extent to which problems from
population dynamics continue to inspire the development of highly sophisticated theories and
analytical tools to study their behaviour is much less known. Zhao’s book, Dynamical Systems in
Population Biology, now in its second, substantially extended edition, documents the rich inspiration
and challenging problems that population biology o�fers for the theory of �nite- and in�nite
dimensional dynamical systems.

The particular biological aspect that is the basis for this book is the temporal variability that is
present in so many biological systems, for example in the form of annual variation. From a dynamical
system point of view, this leads to non-autonomous systems, potentially periodic, but not necessarily

so. The aim of the book then is to “provide an introduction to periodic semi�lows on metric spaces and give applications to population dynamics.” The
preface already sets the tone as the author introduces the main ideas with the possibly simplest example and gives a very short, concise and elegant
proof that every bounded solution of a planar, time-periodic competitive system converges to a periodic orbit.   I strongly recommend taking time to
read the preface. It clearly shows the mathematical emphasis and direction of the book. If it speaks to you, the book with its elegant and beautiful
mathematical theory is for you. If you are more interested in the biological side of things, this book will likely not be your favourite.

The �rst three chapters are devoted to introducing the mathematical machinery required for the analysis in later chapters. While there is always some
biological motivation, the focus is on the mathematical theory. The �rst chapter is about dissipative dynamical systems and considers attractors, chain
transitivity, repellors, perturbations and related topics. The second chapter dives into the important concept of monotonicity that is also a recurring
theme throughout the book. The third chapter discusses nonautonomous semi�lows, periodic and asymptotically periodic semi�lows and the
connection to Poincaré maps and discrete dynamical systems.

Chapters 4–14 each cover a particular application in the form of a clearly de�ned population dynamic question. Most of these chapters can be read
independently. They typically consist of material previously published in one or two research papers by the author and with a large variety of coauthors.
But they are not simple reprints of the original papers. They contain more detailed explanations, they refer to the concepts and theorems introduced in
chapters 1–3, and some contain new and alternative proofs of old results. Chapter 4 discusses a chemostat model of �nitely many species. Rather than
obtaining the discrete structure from periodicity, it starts with a discrete-time model directly. Chapters 5 and 6 consider periodic and almost periodic
competitive systems of �nitely many species. From Chapter 7 on, the statespace becomes in�nite dimensional, either because of spatial structure or
delay or both. Chapter 7 treats a three-species model with two competitors and one mutualist. Chapter 8 considers a bioreactor that is pulsed
periodically. Chapter 9 looks at predator-prey interactions with delay and nonlocal interactions, and Chapter 10 treats travelling waves in the case of
two locally stable equilibria.

The tone changes slightly in Chapters 11–14, which were added in the second edition. Chapter 11 is devoted to a quantity of great interest in
epidemiology: the basic reproduction ratio. This quantity is abstractly de�ned as the number of secondary infections that a single infective organism in
a completely susceptible population will generate. De�ning this quantity in models of great complexity, i.e. models that include spatial structure,
delays, and interacting populations, is highly nontrivial. Proving that this number has the same properties as in the simple ODE models for which it was
originally introduced, namely that it is the threshold between disease extinction and persistence, is very hard. It requires the tools and techniques
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introduced in the �rst chapters and several additional ideas. Chapters 12–14 then consider more applications of this basic reproduction ratio to
populations with periodic delays, with spatial structure, and for the complicated dynamics of Lyme disease.

The author is a highly regarded specialist in dynamical systems theory, and the book gives a great introduction of the theory and comprehensive review
of its many applications. In addition, I particularly enjoyed the notes at the end of each chapter that place the content into the wider mathematical
literature and give some historical context. With its 450 references, the book is a treasure trove for graduate students as well as experienced researcher.
It may not be the easiest introduction to analyzing population dynamic models, but it is an impressive compendium of the elegant and powerful
mathematical theory required to analyze population dynamic models that contain the complexity required to make them meaningful.
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