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Carl Friedrich Gauss (1777–1855) was not only the prince of mathematicians, but also an applied mathematician who contributed to the development of the
least squares method, numerical solutions of systems of linear equations, numerical solutions of integrals, the theory of interpolation, the Fast Fourier
Transform (FFT), systems of ordinary di�ferential equations, and more. He was also a mathematical physicist and a talented experimenter who conducted
research in astronomy, geodesy, and geomagnetism [1, 2, 4, 6, 8]. In this study, we are interested in Gauss’s work on the terrestrial magnetic �eld. He was
the �rst to model mathematically the magnetic �eld at the surface of the Earth, and to �nd numerical results. His model proved to be the most ambitious
project of applied mathematics of its time. It is a perfect example of Joseph Fourier’s view of natural philosophy: “Profound study of nature is the most
fertile source of mathematical discoveries” [3, p. 7]. However, this particular contribution by Gauss has been largely overlooked by the historians of
mathematics, although it has been noted by geophysicists.

Erroneous explanations of the terrestrial magnetic �eld had existed for centuries. Christopher Columbus believed that the Polar star attracts a magnetic
needle. Others thought that a magnetic mountain exists in the Arctic.  William Gilbert, the physician of Queen Elizabeth I, destroyed all previous
hypotheses when in 1600 he published De Magnete, theorizing that the Earth is a gigantic magnet with a north pole and a south pole.

Although Gauss became interested in the Earth’s magnetic �eld by 1803, it was not until 1839 that he published “Allgemeine Theorie des Erdmagnetismus”
(on the mathematical modeling of the Earth‘s magnetic �eld). This appeared in a very obscure journal [5]—a fact that may help explain the historians’
neglect. Gauss examined William Gilbert’s hypothesis that the Earth is a magnet, and he further postulated that the magnetic potential obeys Laplace’s
equation at the surface of the Earth as well as outside of the Earth. Gauss thus needed to solve the Laplace equation in spherical coordinates for a
heterogeneous spherical terrestrial surface. Therefore, he required a magnetic map as a boundary condition at the surface of the Earth. Unfortunately for
Gauss, the magnetic potential was not measurable. Only the components of the magnetic �eld were observable. The model is [6]:

Here   is the potential,   the radial distance, and  the earth’s radius. Therefore the declination is given by , the inclination will

be  and the horizontal intensity is .

Gauss used the method of separation of variables for the Laplace equation. He wrote the equation for the spherical harmonics, the formula to obtain the
associated Legendre polynomials , and arrived directly—without any explanations or references—at the correct solution in the form of a series of
trigonometric functions and associated Legendre polynomials:
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This equation represents fundamental progress over Legendre’s and Laplace’s 18 -century results on the theory of gravitation. The coe��cients  and 
came to be called the Gauss coe��cients. In modern notation, we have for the complete series of the potential [5]:

Gauss limited himself to N = 4, or 24 Gauss coe��cients for the derivatives of the potential. He already had observations from magnetic stations all around
the terrestrial globe. By a technique of interpolation, he brought back the information to the nodes of a grid where the increments of  and  are constant
[5, pp. 631–632]—creating one of the �rst examples of tessellation! This technique of bringing the information to the nodes of a grid is now called an
objective analysis. Gauss selected 12 nodes on each of seven circles of latitude, for a total of 84 nodes. He then decomposed the problem by working from
the colatitudes  constant, and by doing a harmonic analysis. For example, he had:

Consequently, he calculated nine Fourier coe��cients  per circle of latitude. In , the subscript  refers to the component  of the magnetic
�eld. These calculations had to be repeated for the seven circles of latitude, for a total of 63 coe��cients. But he had to do the computations for the three
components of the magnetic �eld, for an overall total of 63  3 = 189 coe��cients. By identi�cation, he had [4]:

Gauss used the 189 values to solve by least squares these systems of equations in order to �nd the 24 Gauss coe��cients. In Figures 1 and 2 we have
recreated, with a computer, Gauss’s model and his results for the declination and the total intensity for the year 1835. His map of the intensity corresponds
well to modern numerical results.
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Figure 1. Declination [in degrees] according to Gauss’s model for the year 1835, degree and order 4. The map corresponds to a Mercator projection.



In conclusion, Gauss’s memoir of 1839, by using spherical harmonics, gave a mathematical form to Gilbert’s hypothesis. It was also a major contribution to
applied mathematics. Let us quote James Clerk Maxwell, who wrote in 1873 [7, p. viii]:

Geomagnetism remains a very active �eld of observation and theory, not least for its continuing utility for orientation and navigation, but also due to
interest in ongoing changes within the Earth. The wandering of the magnetic poles over recent decades is one example, and outside the scope of this article,
but it is worth noting that geomagnetic �eld data continue to be assimilated and distributed in the form of spherical harmonic coe��cients, so that creating
any map from historical or modern data involves tables of harmonic coe��cients in the manner that Gauss began.

The International Geomagnetic Reference Field (IGRF) presents its model using spherical harmonics of degree and order 13. NOAA also has a series of
models extending in some cases to degree and order 720. The terrestrial and lunar gravitational �elds are reported and modelled using spherical
harmonics, as are such diverse data as the cosmic microwave background. Gauss was visionary in his identi�cation and application of a methodology critical
to so many modern endeavours.
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Figure 2. Intensity of the magnetic �eld [in microtesla] according to Gauss’s model for the year 1835, degree and order 4. The map corresponds to a Mercator projection.

Gauss, as a member of the German Magnetic Union, brought his powerful intellect to bear on the theory of
magnetism, and on the methods of observing it, and not only added greatly to our knowledge of the theory of
attractions, but reconstructed the whole magnetic science as regards the instruments used, the methods of
observation, and the calculation of the results, so that his memoirs on Terrestrial Magnetism may be taken as
models of physical research by all those who are engaged in the measurement of any of the forces in nature.
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