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Try this. Go to your library and, for each decade a�ter 1950, take down a typical Calculus textbook �rst published during those ten years. You will �nd
that, by and large, most of the textbooks used to teach Di�ferential Calculus in college classrooms for the past 70 or 80 years have presented the
topics in essentially the following order. (The dates below indicate when each concept was introduced. Obviously, these should be taken with a grain
of salt. New concepts tend to emerge slowly rather than via a single invention.)

Limits (1823)
Continuity (1817)
The Derivative (1797)
Di�ferentiation Rules (1684) and Tangent Lines
Implicit Di�ferentiation (1684)
Related Rates (1665)
Rolle’s Theorem (1691), the Mean Value Theorem (1797), and Extreme Value Theorem
(1874)
The First Derivative Test and Curve Sketching
The Second Derivative Test and Curve Sketching
Applied Optimization
Antiderivatives

Logically, this makes perfect sense. We start with the theoretical foundation and build from there. But the di�ferentials on which Leibniz founded his
Calculus were used for nearly 200 years before limits were invented to replace them. Notice that di�ferentials don’t appear in our list. They
sometimes make a small cameo appearance in a section on approximations, but they are otherwise absent from standard teaching practices.

Note also that, as we read this list from top to bottom, we move backwards in time. This is common in mathematics teaching. In order to present a
“clean” �nished product to students we start with the foundational underpinnings and then move on to the motivating applications.

Think about your own research. When wrestling with a research problem are the foundational questions top-of-mind, or do you keep those on the
back burner until you’ve actually made progress? Learning new mathematics is a creative process, whether one is doing original research or learning
in a classroom. But when we teach in reverse-historical order, we are illustrating neither how mathematics is best created nor how it is best learned.
We are illustrating how it is best presented. We (the authors) believe that preserving the historical order helps students see and appreciate the
creative, problem-solving aspect of our discipline better than the reverse-historical order that has been the norm for some decades.

Replacing limits with di�ferentials as the basis for Calculus is entirely within reach of �rst-year students if we are willing to proceed intuitively.
Indeed, Leibniz based his “Calculus Di�ferentialis” (Calculus of Di�ferentials) on the notion of a di�ferential because it is both intuitive and visually
suggestive. He knew it was not a strong logical foundation, but his goals were to construct tangents and to solve optimization problems in a
systematic way—his Calculus was a means to those ends. This is manifest from the title of his �rst publication on the topic:

A New Method for Maxima and Minima as Well as Tangents, Which is Impeded Neither by Fractional Nor by Irrational Quantities, and a Remarkable
Type of Calculus for This [1].

On the other hand, the limit concept was suggested by Newton, re�ned by Cauchy (and others), and �nalized by Weierstrass in 1874, nearly 200
years a�ter Leibniz. Like all of mathematics, the limit concept was invented to address very speci�c questions—in this case, how can we be sure that
the computational procedures described by Leibniz (and Newton) really work? Perhaps more important, when do they fail? When we begin a
Calculus course with the non-intuitive subtlety of the limit concept, we are asking students to understand the answers to those questions without
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actually asking the questions �rst, or even indicating why they are important. Although this may be good mathematics, it seems to us to be poor
pedagogy. It is like teaching a student to solve a crossword puzzle by giving them the grid, the answers, and their locations, and telling them to �ll in
the grid. Certainly, something will be learned this way. And, we can build from there. But how many students would stick with us until it gets
interesting? Would you?

Rather than starting at the logical beginning, suppose we start at the chronological beginning, with Leibniz’ Calculus of Di�ferentials. The
di�ferentiation rules are easy to explain intuitively using di�ferentials and diagrams. As Leibniz stated in his paper, “The Demonstration of all this
[the di�ferentiation rules] will be easy to one who is experienced in these matters [in�nitesimals]” [1]. A beginning Calculus student might balk at
calling them “easy,” but once di�ferentials are accepted, the di�ferentiation rules are straightforward. In fact, the Constant Rule 

 and the Sum Rule  are directly analogous to their �nite counterparts. The subtleties of di�ferentials will force a later

switch to limits, but having students accept these objects in the beginning is akin to having beginning geometry students accept that there is a
geometric object called a point.

Figure 1. Diagrammatic proof of the Product Rule. Created by the authors.

Figure 1 shows a simple proof of the Product Rule. In order to believe that the Product Rule is valid, a student only needs to accept that the corner
indicated can be safely ignored. This is not a rigorous proof. But it is intuitive and therefore believable. Moreover, the lack of rigor can be pointed out
in passing, thereby sowing the seeds of curiosity: “I wonder what a rigorous proof would look like?”

We contend that a clear, but intuitive, explanation will give the beginner more faith in a computational tool than any fully rigorous, but abstruse
proof. All that is required to use a tool e�fectively is faith that it is the right tool for the job—and practice. Lots of practice.

Once these �rst three di�ferentiation rules are known, the Constant Multiple Rule, the Power Rule, and the Quotient Rule all follow without much
fuss (assuming that functions involved are di�ferentiable). They can all be developed, and substantial practice given, fairly quickly.

(d(constant) =
0) (d(x + y) = dx + dy)



Figure 2. Proof by di�ferentials of  Diagram created by the authors.

Di�ferentiating the trigonometric functions without limits is similarly straightforward. For example, Figure 2 shows a di�ferential-based proof that
the derivative of sin 𝑥 is cos 𝑥. (This proof was devised by Roger Cotes, a colleague of Newton.)

Again, nothing here is meant to be rigorous. We simply provide some ad hoc, intuitive arguments that can be used to justify the di�ferentiation rules
without limits so that we can quickly move on to using the computational tools of Calculus.

For beginning students, the use of function notation and Lagrange’s prime notation— —can make the
di�ferentiation of composed functions unnecessarily unwieldy. But using di�ferentials renders this moot. For example, if we let  then

When we use di�ferentials, topics such as implicit di�ferentiation, the chain rule, and related rates do not warrant special consideration. For
example, given an equation such as , direct application of the di�ferentiation rules yields . If we wish to

compute a slope, we divide by  to obtain  . If we wish to see how the rates of change of  and  are related, we divide by  to obtain

 or, in Newton’s �luxion notation, . There is no need to “remember the chain rule” because the chain rule
did not exist in either Newton’s or Leibniz’ version of Calculus.

In fact, the phrase “chain rule” doesn’t seem to appear in Calculus texts until the late 19th or early 20th centuries, although earlier arithmetic and

algebra books used the term to describe the computations involved in changing units (e.g. , which is
very similar to the Calculus chain rule expressed in di�ferential form. We conjecture that textbook authors simply co-opted the name of the older
rule for use in Calculus.
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Computations of this kind are similar to, and are therefore good preparation for, the types of calculations students will be expected to perform later
in contexts where di�ferentials are already heavily relied upon. Think of integration by substitution, integration by parts, and line and path integrals.

Furthermore, this approach is not constrained to single-variable functions. For example, if  then

Notice that the partial derivatives emerged quite naturally.

Freedom from the constraint of one-variable Calculus can be a powerful tool. Consider the derivation of Snell’s Law of Refraction using Figure 3.

Figure 3. Visualization of the derivation of Snell’s Law of Refraction. Diagram created by the authors.

Let  and  represent the velocities of light in medium 1 and medium 2, respectively. The total time for light to travel from point  to point  is
given in terms of the single variable  by

Minimizing  to �nd the path that light travels is messy, and it only gives us the value of  that minimizes . To derive Snell’s Law we still

have to show that . If instead we write down our objective function

along with all of our constraints

in terms of the variables that appear in the diagram and then di�ferentiate (using di�ferentials) we get
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so that

Setting  gives us  or , which is Snell’s Law.

Treating  as a ratio of two di�ferentials rather than as a single entity can streamline the use of Calculus as a problem-solving tool in many
instances.

You may not yet be fully convinced that the “di�ferentials �rst” approach is better pedagogy, but if you are still reading you are clearly intrigued and
you are probably wondering where you could �nd a textbook that takes this approach.

We’re so glad you asked. We have written such a book, and we have used it ourselves in the classroom. Our text, Di�ferential Calculus: From Practice to
Theory, is an Open Educational Resource (OER) that you are welcome to download from https://milneopentextbooks.org/di�ferential-calculus-from-
practice-to-theory/ and use in your Di�ferential Calculus course at no cost to you or your students. It has a Creative Commons license, which means
that you are welcome to use it as is or to alter it to suit your needs. We deliberately designed our textbook so that a student learning from it will end
the �rst semester with at least the same skills and understanding as a student learning from a “limits �rst” approach.

Part I of our textbook (From Practice) presents “Calculus Di�ferentialis” as the intuitive, focused-on-problem-solving “Remarkable Calculus” that
Leibniz described in his paper [1]. The di�ferentiation rules are introduced intuitively, leaning heavily on the notion of the di�ferential. We do not
hide the questionable nature of the di�ferential; we just don’t dwell on it. When the use of di�ferentials becomes problematic we point that out so
the student is aware of the issue and, hopefully, becomes curious. But we defer the resolution of this foundational question to Part II (to Theory),
where we develop the limit concept with full epsilon/delta rigor.

This is a theme throughout our textbook. Substantial questions (e.g., “What is the shape of a hanging chain?”) are o�ten introduced before they can
be easily answered. The students are then led to partial solutions. Once the necessary theory and techniques have been developed the problem is
then re-addressed. The goal is to induce curiosity, and to provoke questions in the student (”If these di�ferentials aren’t really a viable foundation,
what is?”)—and thus reproduce the research experience as much as possible in the context of a Calculus classroom.
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