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The fact that the celebrated numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, … are now known as Fibonacci numbers is mainly due to
Édouard Lucas (1842-1891). Leonardo of Pisa (aka Fibonacci) lived in the decades around 1200, but soon he and his
work were largely forgotten for centuries. Only much later, in 1844, the numbers now bearing Leonardo’s name were
rediscovered by Gabriel Lamé in connection with his analysis of the Euclidean algorithm, and they were �rst known
to Lucas as the Lamé sequence. However, as is o�ten the case with mathematical objects named a�ter persons, the
Fibonacci numbers had been discovered earlier, and were already known by Indian mathematicians long before
Leonardo. These are just some of the interesting historical remarks that can be found in the introduction (and else-
where) in the book under review.

To introduce the main topic of this book, we recall that the Fibonacci numbers F  are usually de�ned recursively by F
= 0, F  = 1, and F = F  + F (n ≥ 1). Their companion sequence, the Lucas numbers (not to be confused with the Lucas
sequences) are similarly de�ned by L  = 2, L  = 1, and L = L  + L (n ≥ 1). Now, given two nonzero integers P and Q, one
de�nes the fundamental Lucas sequence U = U (P,Q) and the companion (or associate) Lucas sequence V  = V (P,Q) by

U = 0, U  = 1,  and  U = PU  – QU (n ≥ 1),

V = 2, V  = P,  and  V = PV  – QV (n ≥ 1),

respectively. Clearly, when P = 1 and Q = -1, these two sequences reduce to the Fibonacci and Lucas numbers, respec-
tively. Nearly all known properties of these two special sequences extend to the Lucas sequences and their compan-
ion sequences. One of the main goals of the book under review is to collect the most important of these properties
and identities, and to present a coherent theory. To quote from the Introduction,

“The objective of this book is to provide a much more thorough discussion of the Lucas sequences than is available in existing monographs. We will bring together a variety of results, which
are currently scattered throughout the literature. Various sections will be devoted to intrinsic arithmetic properties of these sequences, primality testing, density problems, and the problem
of generalizing them. Furthermore, their application, not only to primality testing but to integer factoring, solution of quadratic and cubic congruences, cryptography, and Diophantine equa-
tions, will be brie�ly discussed. Throughout the book, we will include a sprinkling of historical comments, where relevant.

“Much of the book is not intended to be overly detailed. Rather, our objective is to provide a good, elementary, and clear explanation of the subject matter without too much ancillary mate-
rial. Most chapters […] will address a particular theme, provide enough information for the reader to get a feel for the subject, and supply references to more comprehensive results. We have
also attempted to make this book accessible to anyone with a basic knowledge of elementary number theory and abstract algebra.

“Our intended audience is number theorists, both professional and amateur, students, and enthusiasts. We emphasize that this book was never intended to be a textbook; its focus is either
much too narrow or too broad for that, but it might be used as supplementary reading for students enrolled in second or more advanced courses in number theory.”

In my opinion, the authors succeeded very well in their stated objectives and intentions. The book is written in a lively style and is a pleasure to read. The various chapters are, to a certain ex-
tent, self-contained, with their own abstracts and lists of references. A�ter the Introduction, Chapter 2 contains the basic theory of the Lucas sequences. Chapter 3, entitled “Applications”, be-
gins with a discussion of the Mersenne numbers and continues with applications to primality testing, solving certain congruences, integer factorization, and other applications. Chapter 4
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deals with further properties and contains connections with the circular functions, Chebyshev polynomials, and the Dickson polynomials. Chapter 5 is a detailed study of the Lucasnomial co-
e��cients, a generalization of the usual binomial coe��cients. The next three chapters, “Cubic Extensions of the Lucas Sequences”, “Linear Recurrence Sequences and Further Generalizations”,
and “Divisibility Sequences and Further Generalizations” deal with various generalizations of Lucas Sequences, including Lucas’s own ideas and results. Chapter 9 is of a somewhat di�ferent
nature and deals with prime densities. The �nal chapter contains a brief epilogue summarizing the material covered and ends with a selection of 13 unsolved problems (one of which is al-
ready solved, as the authors mention in a note added to the problem).

The �nal paragraph of the book’s epilogue is worth quoting here: “We have seen, then, that much has been learned about the Lucas sequences since the end of the nineteenth century.
Indeed, it seems remarkable that such a large amount of activity has been devoted to such a simple pair of sequences, but still there seems to be much more to do. A glance at publications
such as the Journal of Integer Sequences, the Fibonacci Quarterly, Integers, and the Online Encyclopedia of Integers Sequences (OEIS) suggests that interest in these sequences shows no sign of
diminishing.”

The main content of the book is followed by an appendix with a biographical sketch of Lucas, whose life was tragically cut short as a result of a freak accident he su�fered at age 49. This ap-
pendix also contains comments on his work and scienti�c legacy.

This excellent book by Ballot and Williams will lead the interested reader through the vast amount of relevant literature and the numerous related topics. I am sure it will prove to be as use-
ful and important as some other classic books with similar scopes, for instance T. J. Rivlin’s Chebyshev Polynomials (Wiley, 1990), Richard Stanley’s Catalan Numbers (Cambridge, 2015), and two
well-known books mainly devoted to Fibonacci and Lucas numbers, by T. Koshy (Wiley, 2018) and by S. Vajda (Dover, 2008).

Finally, it should be mentioned that this book is the latest of three related monographs authored or co-authored by H. C. Williams, the other two being Édouard Lucas and Primality Testing
(CMS Monographs, Wiley, 1998) and Solving the Pell Equation, with M. J. Jacobson, Jr. (CMS Books in Mathematics, Springer, 2009).
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